Concept information
Preferred term
Harnack's inequality
Definition
-
In mathematics, Harnack's inequality is an inequality relating the values of a positive harmonic function at two points, introduced by A. Harnack (1887). Harnack's inequality is used to prove Harnack's theorem about the convergence of sequences of harmonic functions. J. Serrin (1955), and J. Moser (1961, 1964) generalized Harnack's inequality to solutions of elliptic or parabolic partial differential equations. Such results can be used to show the interior regularity of weak solutions.
Perelman's solution of the Poincaré conjecture uses a version of the Harnack inequality, found by R. Hamilton (1993), for the Ricci flow.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Harnack%27s_inequality)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-SX35HXWB-P
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}