Concept information
Preferred term
Korn's inequality
Definition
-
In mathematical analysis, Korn's inequality is an inequality concerning the gradient of a vector field that generalizes the following classical theorem: if the gradient of a vector field is skew-symmetric at every point, then the gradient must be equal to a constant skew-symmetric matrix. Korn's theorem is a quantitative version of this statement, which intuitively says that if the gradient of a vector field is on average not far from the space of skew-symmetric matrices, then the gradient must not be far from a particular skew-symmetric matrix. The statement that Korn's inequality generalizes thus arises as a special case of rigidity.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Korn%27s_inequality)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-V5QXH4FW-N
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}