Concept information
Preferred term
hypergeometric function
Definition
-
In mathematics, the Gaussian or ordinary hypergeometric function 2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Hypergeometric_function)
Broader concept
Narrower concepts
- affine q-Krawtchouk polynomial
- Airy function
- Askey scheme
- Askey-Wilson polynomial
- basic hypergeometric series
- Bateman function
- Bessel function
- Bessel polynomial
- Bring radical
- Chebyshev polynomial
- confluent hypergeometric function
- Coulomb wave function
- Cunningham function
- Dixon's identity
- elliptic integral
- error function
- exponential integral
- Fresnel integral
- Gauss's continued fraction
- Gegenbauer polynomial
- Hermite polynomial
- hypergeometric function of a matrix argument
- Jacobi polynomial
- Kampé de Fériet function
- Kelvin function
- Kummer's function
- Laguerre polynomial
- Legendre polynomial
- parabolic cylinder function
- Picard-Fuchs equation
- Ramanujan-Soldner constant
Entry terms
- Gaussian hypergeometric function
In other languages
-
French
-
fonction hypergéométrique de Gauss
URI
http://data.loterre.fr/ark:/67375/PSR-VZ83B143-L
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}