Concept information
Preferred term
group representation
Definition
-
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Group_representation)
Broader concept
Narrower concepts
- fundamental representation
- invariant convex cone
- Jucys-Murphy element
- Kazhdan-Lusztig polynomial
- Kazhdan's property (T)
- Langlands program
- Littlewood-Richardson rule
- Mautner's lemma
- maximal torus
- quasiregular representation
- reductive group
- representation of a Lie group
- representation ring
- Schur polynomial
- Tannaka-Krein duality
- unitary representation
- Young's lattice
- Young tableau
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-W9LN9ZRK-5
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}