Concept information
Preferred term
Lefschetz zeta function
Definition
-
In mathematics, the Lefschetz zeta-function is a tool used in topological periodic and fixed point theory, and dynamical systems. Given a continuous map , the zeta-function is defined as the formal series
where is the Lefschetz number of the -th iterate of . This zeta-function is of note in topological periodic point theory because it is a single invariant containing information about all iterates of .
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Lefschetz_zeta_function)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-W9SB9J4J-4
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}