Concept information
Preferred term
injectivity radius
Definition
-
The injectivity radius at a point p of a Riemannian manifold is the largest radius for which the exponential map at p is a diffeomorphism. The injectivity radius of a Riemannian manifold is the infimum of the injectivity radii at all points.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Glossary_of_Riemannian_and_metric_geometry#I)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-XJP01NSW-2
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}