Concept information
Preferred term
similarity invariance
Definition
-
In linear algebra, similarity invariance is a property exhibited by a function whose value is unchanged under similarities of its domain. That is, is invariant under similarities if where is a matrix similar to A. Examples of such functions include the trace, determinant, characteristic polynomial, and the minimal polynomial. A more colloquial phrase that means the same thing as similarity invariance is "basis independence", since a matrix can be regarded as a linear operator, written in a certain basis, and the same operator in a new basis is related to one in the old basis by the conjugation , where is the transformation matrix to the new basis.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Similarity_invariance)
Broader concept
Narrower concepts
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-ZL9P1DHX-D
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}