Concept information
Preferred term
Ehrhart polynomial
Definition
-
In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane.
These polynomials are named after Eugène Ehrhart who studied them in the 1960s.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Ehrhart_polynomial)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-ZXV5K7J2-L
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}