Concept information
Término preferido
automorphic L-function
Definición
-
In mathematics, an automorphic L-function is a function L(s,π,r) of a complex variable s, associated to an automorphic representation π of a reductive group G over a global field and a finite-dimensional complex representation r of the Langlands dual group LG of G, generalizing the Dirichlet L-series of a Dirichlet character and the Mellin transform of a modular form. They were introduced by Langlands (1967, 1970, 1971). Borel (1979) and Arthur & Gelbart (1991) gave surveys of automorphic L-functions.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Automorphic_L-function)
Concepto genérico
Conceptos específicos
En otras lenguas
-
francés
URI
http://data.loterre.fr/ark:/67375/PSR-F560LSQ9-P
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}