Concept information
Término preferido
Whitney embedding theorem
Definición
-
In mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney:
- The strong Whitney embedding theorem states that any smooth real m-dimensional manifold (required also to be Hausdorff and second-countable) can be smoothly embedded in the real 2m-space, if m > 0. This is the best linear bound on the smallest-dimensional Euclidean space that all m-dimensional manifolds embed in, as the real projective spaces of dimension m cannot be embedded into real (2m − 1)-space if m is a power of two (as can be seen from a characteristic class argument, also due to Whitney).
- The weak Whitney embedding theorem states that any continuous function from an n-dimensional manifold to an m-dimensional manifold may be approximated by a smooth embedding provided m > 2n. Whitney similarly proved that such a map could be approximated by an immersion provided m > 2n − 1. This last result is sometimes called the Whitney immersion theorem.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Whitney_embedding_theorem)
Concepto genérico
En otras lenguas
URI
http://data.loterre.fr/ark:/67375/PSR-FK79K0D4-5
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}