Concept information
Término preferido
Laplacian
Definición
-
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Laplace_operator)
Concepto genérico
Conceptos específicos
Etiquetas alternativas
- Laplace operator
En otras lenguas
-
francés
-
opérateur laplacien
URI
http://data.loterre.fr/ark:/67375/PSR-GHZJHV7P-F
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}