Skip to main

Mathématiques (thésaurus)

Search from vocabulary

Concept information

géométrie > géométrie différentielle > théorème de Frobenius
topologie > topologie différentielle > théorème de Frobenius

Término preferido

théorème de Frobenius  

Definición

  • Le théorème de Frobenius donne une condition nécessaire et suffisante d'intégrabilité locale d'un système d'équations aux dérivées partielles du premier ordre dont le membre de droite dépend des variables, des inconnues, mais ne dépend pas de dérivées partielles de ces inconnues : un tel système d'équations aux dérivées partielles est appelé un « système de Pfaff ». Les fonctions du second membre sont supposées seulement de classe ,, ce qui rend impossible l'application du théorème de Cauchy-Kowalevski, qui suppose ces fonctions analytiques. Le théorème de Frobenius a des liens étroits avec le lemme de Poincaré pour les 1-formes, ce lemme indiquant alors sous quelle condition une 1-forme différentielle est localement exacte. Le théorème de Frobenius conduit à considérer les « variétés intégrales » de la géométrie différentielle et peut s'exprimer dans ce langage. Ces variétés intégrales conduisent à la notion de feuilletage. Le « théorème de Frobenius » a en réalité été établi par Feodor Deahna en 1840, dans un article approfondissant les travaux de Johann Friedrich Pfaff et de Charles Gustave Jacob Jacobi sur les équations aux dérivées partielles du premier ordre (remontant quant à eux à 1815 et 1827 respectivement) et qui est passé inaperçu jusqu'à ce que Ferdinand Georg Frobenius l'exhume en 1875. Le théorème de Chow-Rashevskii et celui de Hector Sussmann, datant de 1938-39 et 1973 respectivement, étudient l'existence de variétés intégrales pour des « p-champs » singuliers ; ils sont, comme le théorème de Frobenius, très utilisés pour étudier la commandabilité des systèmes non linéaires (le lien entre cette question de commandabilité et le théorème de Frobenius a en premier lieu été noté par Robert Hermann en 1963).
    (Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Frobenius_(g%C3%A9om%C3%A9trie_diff%C3%A9rentielle))

En otras lenguas

URI

http://data.loterre.fr/ark:/67375/PSR-L2MHCD1K-M

Descargue este concepto:

RDF/XML TURTLE JSON-LD Creado 19/7/23, última modificación 19/7/23