Skip to main

Mathematics (thesaurus)

Search from vocabulary

Concept information

Término preferido

Selberg zeta function  

Definición

  • The Selberg zeta-function was introduced by Atle Selberg (1956). It is analogous to the famous Riemann zeta function
    where is the set of prime numbers. The Selberg zeta-function uses the lengths of simple closed geodesics instead of the prime numbers. If is a subgroup of SL(2,R), the associated Selberg zeta function is defined as follows,
    or
    where p runs over conjugacy classes of prime geodesics (equivalently, conjugacy classes of primitive hyperbolic elements of ), and N(p) denotes the length of p (equivalently, the square of the bigger eigenvalue of p).
    (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Selberg_zeta_function)

Concepto genérico

En otras lenguas

URI

http://data.loterre.fr/ark:/67375/PSR-MB837NK3-F

Descargue este concepto:

RDF/XML TURTLE JSON-LD Creado 4/8/23, última modificación 18/10/24