Concept information
Término preferido
integral domain
Definición
-
In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Integral_domain)
Concepto genérico
Conceptos específicos
En otras lenguas
-
francés
-
anneau d'intégrité
URI
http://data.loterre.fr/ark:/67375/PSR-N11QQH4B-1
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}