Skip to main

Mathématiques (thésaurus)

Search from vocabulary

Concept information

nombre > théorie des nombres > théorème de la progression arithmétique

Término preferido

théorème de la progression arithmétique  

Definición

  • En mathématiques, et plus précisément en théorie des nombres, le théorème de la progression arithmétique, s'énonce de la façon suivante : pour tout entier n non nul et tout entier m premier avec n, il existe une infinité de nombres premiers congrus à m modulo n (c'est-à-dire de la forme m + an avec a entier). Ce théorème est une généralisation du théorème d'Euclide sur les nombres premiers. Sa première démonstration, due au mathématicien allemand Gustav Lejeune Dirichlet en 1838, fait appel aux résultats de l'arithmétique modulaire et à ceux de la théorie analytique des nombres. La première démonstration « élémentaire » est due à Atle Selberg en 1949.
    (Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_la_progression_arithm%C3%A9tique)

Concepto genérico

En otras lenguas

URI

http://data.loterre.fr/ark:/67375/PSR-P6H0CS8T-R

Descargue este concepto: