Concept information
Término preferido
Gram-Schmidt process
Definición
-
In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a method for orthonormalizing a set of vectors in an inner product space, most commonly the Euclidean space Rn equipped with the standard inner product. The Gram–Schmidt process takes a finite, linearly independent set of vectors S = {v1, ..., vk} for k ≤ n and generates an orthogonal set S′ = {u1, ..., uk} that spans the same k-dimensional subspace of Rn as S.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process)
Concepto genérico
En otras lenguas
-
francés
-
algorithme de Gram-Schmidt
URI
http://data.loterre.fr/ark:/67375/PSR-SG5KGTBD-C
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}