Concept information
Término preferido
Fenchel-Moreau theorem
Definición
-
In convex analysis, the Fenchel–Moreau theorem (named after Werner Fenchel and Jean Jacques Moreau) or Fenchel biconjugation theorem (or just biconjugation theorem) is a theorem which gives necessary and sufficient conditions for a function to be equal to its biconjugate. This is in contrast to the general property that for any function . This can be seen as a generalization of the bipolar theorem. It is used in duality theory to prove strong duality (via the perturbation function).
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Fenchel%E2%80%93Moreau_theorem)
Concepto genérico
Etiquetas alternativas
- biconjugation theorem
- Fenchel biconjugation theorem
En otras lenguas
-
francés
-
théorème de biconjugation
-
théorème de biconjugation de Fenchel
URI
http://data.loterre.fr/ark:/67375/PSR-SVKTCD9K-F
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}