Skip to main

Mathematics (thesaurus)

Search from vocabulary

Concept information

set theory > function space > orthogonal function
algebra > linear algebra > function space > orthogonal function
category theory > function space > orthogonal function

Término preferido

orthogonal function  

Definición

  • In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval as the domain, the bilinear form may be the integral of the product of functions over the interval:


    The functions and are orthogonal when this integral is zero, i.e. whenever . As with a basis of vectors in a finite-dimensional space, orthogonal functions can form an infinite basis for a function space. Conceptually, the above integral is the equivalent of a vector dot product; two vectors are mutually independent (orthogonal) if their dot-product is zero.
    (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Orthogonal_functions)

Concepto genérico

Conceptos específicos

En otras lenguas

URI

http://data.loterre.fr/ark:/67375/PSR-TXTD8V7M-1

Descargue este concepto: