Concept information
Término preferido
hyperbolic geometry
Definición
-
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with : For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Hyperbolic_geometry)
Concepto genérico
Conceptos específicos
- Beltrami-Klein model
- coordinate system for the hyperbolic plane
- coquaternion
- Hilbert's arithmetic of ends
- Hilbert's theorem
- Hurwitz surface
- hyperbolic manifold
- hyperbolic metric space
- hyperbolic space
- hyperbolic triangle
- ideal polyhedron
- ideal triangle
- Klein quartic
- Lambert quadrilateral
- Margulis lemma
- Poincaré disk
- Poincaré metric
- point at infinity
- pseudosphere
- special linear group SL(2, R)
- ultraparallel theorem
Etiquetas alternativas
- Bolyai-Lobachevskian geometry
- Lobachevskian geometry
En otras lenguas
-
francés
-
géométrie de Lobatchevski
URI
http://data.loterre.fr/ark:/67375/PSR-VX20K4H9-G
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}