Concept information
Terme préférentiel
Cauchy condensation test
Définition
-
In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence of non-negative real numbers, the series converges if and only if the "condensed" series converges. Moreover, if they converge, the sum of the condensed series is no more than twice as large as the sum of the original.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Cauchy_condensation_test)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-C7167V5J-J
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}