Concept information
Terme préférentiel
Laplace transform
Définition
-
In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace, is an integral transform that converts a function of a real variable (usually t, in the time domain) to a function of a complex variable s (in the complex frequency domain, also known as s-domain, or s-plane). The transform has many applications in science and engineering because it is a tool for solving differential equations. In particular, it transforms ordinary differential equations into algebraic equations and convolution into multiplication.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Laplace_transform)
Concept générique
Concepts spécifiques
Traductions
-
français
-
transformation de Laplace
URI
http://data.loterre.fr/ark:/67375/PSR-C7D8TZDV-S
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}