Concept information
Terme préférentiel
quantifier
Définition
-
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier ∀ in the first order formula ∀ x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier ∃ in the formula ∃ x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Quantifier_(logic))
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-D5C3Z49W-5
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}