Concept information
Terme préférentiel
Lie bracket
Définition
-
In mathematics, a Lie algebra (pronounced /liː/ LEE) is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. Otherwise said, a Lie algebra is an algebra over a field where the multiplication operation is now called Lie bracket and has two additional properties: it is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . The Lie bracket does not need to be associative, meaning that the Lie algebra can be non associative.
Given an associative algebra (like for example the space of square matrices), a Lie bracket can be and is often defined through the commutator, namely defining correctly defines a Lie bracket in addition to the already existing multiplication operation.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Lie_algebra)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-D9KT6PSR-Z
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}