Concept information
Terme préférentiel
Cauchy integral theorem
Définition
-
In mathematics, the Cauchy integral theorem (also known as the Cauchy–Goursat theorem) in complex analysis, named after Augustin-Louis Cauchy (and Édouard Goursat), is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if is holomorphic in a simply connected domain Ω, then for any simply closed contour in Ω, that contour integral is zero.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Cauchy%27s_integral_theorem)
Concept générique
Synonyme(s)
- Cauchy-Goursat theorem
Traductions
-
français
-
théorème intégral de Cauchy-Goursat
URI
http://data.loterre.fr/ark:/67375/PSR-DD6JCC30-N
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}