Concept information
Terme préférentiel
Gegenbauer polynomial
Définition
-
In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(α)
n(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Gegenbauer_polynomials)
Concept générique
Synonyme(s)
- ultraspherical polynomial
Traductions
-
français
-
polynôme ultrasphérique
URI
http://data.loterre.fr/ark:/67375/PSR-FC602064-K
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}