Concept information
Terme préférentiel
point at infinity
Définition
-
In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Adjoining these points produces a projective plane, in which no point can be distinguished, if we "forget" which points were added. This holds for a geometry over any field, and more generally over any division ring.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Point_at_infinity)
Concept générique
Synonyme(s)
- ideal point
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-FM8KZ7BS-Q
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}