Concept information
Terme préférentiel
commutative algebra
Définition
-
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Commutative_algebra)
Concept générique
Concepts spécifiques
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-FTGGBTC5-X
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}