Concept information
Terme préférentiel
fundamental theorem of Riemannian geometry
Définition
-
In the mathematical field of Riemannian geometry, the fundamental theorem of Riemannian geometry states that on any Riemannian manifold (or pseudo-Riemannian manifold) there is a unique affine connection that is torsion-free and metric-compatible, called the Levi-Civita connection or (pseudo-)Riemannian connection of the given metric. Because it is canonically defined by such properties, often this connection is automatically used when given a metric.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Fundamental_theorem_of_Riemannian_geometry)
Concept générique
Traductions
URI
http://data.loterre.fr/ark:/67375/PSR-G0QKCCC2-2
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}