Concept information
Terme préférentiel
hypergeometric function of a matrix argument
Définition
-
In mathematics, the hypergeometric function of a matrix argument is a generalization of the classical hypergeometric series. It is a function defined by an infinite summation which can be used to evaluate certain multivariate integrals. Hypergeometric functions of a matrix argument have applications in random matrix theory. For example, the distributions of the extreme eigenvalues of random matrices are often expressed in terms of the hypergeometric function of a matrix argument.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Hypergeometric_function_of_a_matrix_argument)
Concept générique
Traductions
URI
http://data.loterre.fr/ark:/67375/PSR-G9J2WD0M-W
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}