Concept information
Terme préférentiel
Krull dimension
Définition
-
In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Krull_dimension)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-GTHQD1Q4-Z
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}