Concept information
Terme préférentiel
Heisenberg group
Définition
-
In mathematics, the Heisenberg group , named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form
under the operation of matrix multiplication. Elements a, b and c can be taken from any commutative ring with identity, often taken to be the ring of real numbers (resulting in the "continuous Heisenberg group") or the ring of integers (resulting in the "discrete Heisenberg group").
The continuous Heisenberg group arises in the description of one-dimensional quantum mechanical systems, especially in the context of the Stone–von Neumann theorem. More generally, one can consider Heisenberg groups associated to n-dimensional systems, and most generally, to any symplectic vector space.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Heisenberg_group)
Concept générique
Concepts spécifiques
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-K130R6C6-4
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}