Concept information
Terme préférentiel
disc theorem
Définition
-
In the area of mathematics known as differential topology, the disc theorem of Palais (1960) states that two embeddings of a closed k-disc into a connected n-manifold are ambient isotopic provided that if k = n the two embeddings are equioriented. The disc theorem implies that the connected sum of smooth oriented manifolds is well defined.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Disc_theorem)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-K6S3PK09-2
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}