Concept information
Terme préférentiel
diagramme de Schlegel
Définition
-
En géométrie, un diagramme de Schlegel est une projection d'un polytope de l'espace à d dimensions dans l'espace à d-1 dimensions par un point donné à travers une de ses faces. Il en résulte une division du polytope d'origine dans qui lui est combinatoirement équivalente.
Au début du XXe siècle, les diagrammes de Schlegel s'avérèrent être des outils étonnamment pratiques pour l'étude des propriétés topologiques et combinatoires des polytopes. En dimension 3, un diagramme de Schlegel consiste en la projection d'un polyèdre sur une figure plane divisée en zones à l'intérieur (représentant les faces du polyèdre d'origine), et en dimension 4, il consiste en une projection d'un polychore dans un polyèdre divisé à l'intérieur en compartiments (représentant les cellules du polychore d'origine). Ainsi les diagrammes de Schlegel sont couramment employés dans le but de visualiser des objets quadridimensionnels.
C'est le mathématicien allemand Victor Schlegel (1843–1905) qui en a eu l'idée.
(Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/Diagramme_de_Schlegel)
Concept générique
Traductions
-
anglais
URI
http://data.loterre.fr/ark:/67375/PSR-LR1BQFJ7-F
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}