Passer au contenu principal

Mathematics (thesaurus)

Choisissez le vocabulaire dans lequel chercher

Concept information

mathematical analysis > function > elementary function > Langlands-Deligne local constant
algebra > representation theory > Langlands-Deligne local constant
number > number theory > algebraic number theory > class field theory > Langlands-Deligne local constant
number > number theory > analytic number theory > L-function > Langlands-Deligne local constant
mathematical analysis > complex analysis > meromorphic function > L-function > Langlands-Deligne local constant

Terme préférentiel

Langlands-Deligne local constant  

Définition

  • In mathematics, the Langlands–Deligne local constant, also known as the local epsilon factor or local Artin root number (up to an elementary real function of s), is an elementary function associated with a representation of the Weil group of a local field. The functional equation

    L(ρ,s) = ε(ρ,s)L(ρ,1−s)

    of an Artin L-function has an elementary function ε(ρ,s) appearing in it, equal to a constant called the Artin root number times an elementary real function of s, and Langlands discovered that ε(ρ,s) can be written in a canonical way as a product

    ε(ρ,s) = Π ε(ρv, s, ψv)

    of local constants ε(ρv, s, ψv) associated to primes v.
    Tate proved the existence of the local constants in the case that ρ is 1-dimensional in Tate's thesis.
    Dwork (1956) proved the existence of the local constant ε(ρv, s, ψv) up to sign.
    The original proof of the existence of the local constants by Langlands (1970) used local methods and was rather long and complicated, and never published. Deligne (1973) later discovered a simpler proof using global methods.
    (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Langlands%E2%80%93Deligne_local_constant)

URI

http://data.loterre.fr/ark:/67375/PSR-MN23KDNV-D

Télécharger ce concept :

RDF/XML TURTLE JSON-LD Date de création 22/08/2023, dernière modification le 24/08/2023