Concept information
Terme préférentiel
Lubell-Yamamoto-Meshalkin inequality
Définition
-
In combinatorial mathematics, the Lubell–Yamamoto–Meshalkin inequality, more commonly known as the LYM inequality, is an inequality on the sizes of sets in a Sperner family, proved by Bollobás (1965), Lubell (1966), Meshalkin (1963), and Yamamoto (1954). It is named for the initials of three of its discoverers. To include the initials of all four discoverers, it is sometimes referred to as the YBLM inequality.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Lubell%E2%80%93Yamamoto%E2%80%93Meshalkin_inequality)
Concept générique
Synonyme(s)
- LYM inequality
Traductions
-
français
-
inégalité LYM
URI
http://data.loterre.fr/ark:/67375/PSR-NK8CCX7L-X
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}