Concept information
Terme préférentiel
Hilbert's inequality
Définition
-
In analysis, a branch of mathematics, Hilbert's inequality states that
for any sequence u1,u2,... of complex numbers. It was first demonstrated by David Hilbert with the constant 2π instead of π; the sharp constant was found by Issai Schur. It implies that the discrete Hilbert transform is a bounded operator in ℓ2.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Hilbert%27s_inequality)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-NL0VXQGH-N
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}