Concept information
Terme préférentiel
Lagrange's identity
Définition
-
In algebra, Lagrange's identity, named after Joseph Louis Lagrange, is:
which applies to any two sets {a1, a2, ..., an} and {b1, b2, ..., bn} of real or complex numbers (or more generally, elements of a commutative ring). This identity is a generalisation of the Brahmagupta–Fibonacci identity and a special form of the Binet–Cauchy identity.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Lagrange%27s_identity)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-PHZS8DDC-8
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}