Concept information
Terme préférentiel
directional derivative
Définition
-
A directional derivative is a concept in multivariable calculus that measures the rate at which a function changes in a particular direction at a given point. The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a velocity specified by v.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Directional_derivative)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-PJNGWXL6-J
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}