Concept information
Terme préférentiel
Gröbner basis
Définition
-
In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring K[x1, ..., xn] over a field K. A Gröbner basis allows many important properties of the ideal and the associated algebraic variety to be deduced easily, such as the dimension and the number of zeros when it is finite. Gröbner basis computation is one of the main practical tools for solving systems of polynomial equations and computing the images of algebraic varieties under projections or rational maps
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Gr%C3%B6bner_basis)
Concept générique
Synonyme(s)
- standard base
Traductions
-
français
-
base de Buchberger
-
base standard
URI
http://data.loterre.fr/ark:/67375/PSR-Q649939G-N
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}