Concept information
Terme préférentiel
Laplace-Beltrami operator
Définition
-
In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Laplace%E2%80%93Beltrami_operator)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-RHKD2QTQ-H
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}