Concept information
Terme préférentiel
ring
Définition
-
In mathematics, rings are algebraic structures that generalize fields : multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Ring_(mathematics))
Concept générique
Concepts spécifiques
Traductions
-
français
-
anneau unifère
-
anneau unitaire
URI
http://data.loterre.fr/ark:/67375/PSR-RHXBWN0G-4
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}