Passer au contenu principal

Mathematics (thesaurus)

Choisissez le vocabulaire dans lequel chercher

Concept information

Terme préférentiel

confluent hypergeometric function  

Définition

  • In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term confluent refers to the merging of singular points of families of differential equations; confluere is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions :
    - Kummer's (confluent hypergeometric) function M(a, b, z), introduced by Kummer (1837), is a solution to Kummer's differential equation. This is also known as the confluent hypergeometric function of the first kind. There is a different and unrelated Kummer's function bearing the same name.
    - Whittaker functions (for Edmund Taylor Whittaker) are solutions to Whittaker's equation.
    - Coulomb wave functions are solutions to the Coulomb wave equation.
    The Kummer functions, Whittaker functions, and Coulomb wave functions are essentially the same, and differ from each other only by elementary functions and change of variables.
    - Tricomi's (confluent hypergeometric) function U(a, b, z) introduced by Francesco Tricomi (1947), sometimes denoted by Ψ(a; b; z), is another solution to Kummer's equation. This is also known as the confluent hypergeometric function of the second kind.
    (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Confluent_hypergeometric_function)

Concept générique

URI

http://data.loterre.fr/ark:/67375/PSR-RN7T2RV9-J

Télécharger ce concept :

RDF/XML TURTLE JSON-LD Date de création 27/07/2023, dernière modification le 27/07/2023