Concept information
Terme préférentiel
distribution function
Définition
-
In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
Every probability distribution supported on the real numbers, discrete or "mixed" as well as continuous, is uniquely identified by a right-continuous monotone increasing function (a càdlàg function) satisfying and .
In the case of a scalar continuous distribution, it gives the area under the probability density function from minus infinity to . Cumulative distribution functions are also used to specify the distribution of multivariate random variables.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Cumulative_distribution_function)
Concept générique
Synonyme(s)
- cumulative distribution function
Traductions
-
français
-
fonction de distribution cumulative
URI
http://data.loterre.fr/ark:/67375/PSR-RPSD94K6-1
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}