Concept information
Terme préférentiel
série alternée
Définition
-
En mathématiques, et plus particulièrement en analyse, une série alternée est un cas particulier de série à termes réels, dont la forme particulière permet d'avoir des résultats de convergence notables. Une série à termes réels est dite alternée si ses termes sont de signes alternés, c'est-à-dire si elle est de la forme :
avec ai des nombres réels positifs.
Le principal critère de convergence concernant les séries alternées permet de montrer que certaines séries alternées non absolument convergentes sont convergentes, notamment la série harmonique alternée. De tels exemples appartiennent à la famille des séries semi-convergentes. Dans ce cas, un théorème de Riemann assure que l'on peut toujours réordonner les termes de la série pour la faire converger vers n'importe quel réel, et même diverger.
(Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/S%C3%A9rie_altern%C3%A9e)
Concept générique
Traductions
-
anglais
URI
http://data.loterre.fr/ark:/67375/PSR-RV4CJFWZ-N
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}