Concept information
Terme préférentiel
linear matrix inequality
Définition
-
n convex optimization, a linear matrix inequality (LMI) is an expression of the form
where
- is a real vector,
- are symmetric matrices ,
- is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone in the subspace of symmetric matrices .
This linear matrix inequality specifies a convex constraint on y.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Linear_matrix_inequality)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-RXNJS1M1-N
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}