Concept information
Terme préférentiel
musical isomorphism
Définition
-
In mathematics—more specifically, in differential geometry—the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent bundle and the cotangent bundle of a pseudo-Riemannian manifold induced by its metric tensor. There are similar isomorphisms on symplectic manifolds. The term musical refers to the use of the symbols (flat) and (sharp).
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Musical_isomorphism)
Concept générique
Synonyme(s)
- canonical isomorphism
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-S909F0LS-C
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}