Passer au contenu principal

Mathematics (thesaurus)

Choisissez le vocabulaire dans lequel chercher

Concept information

Terme préférentiel

Harnack's inequality  

Définition

  • In mathematics, Harnack's inequality is an inequality relating the values of a positive harmonic function at two points, introduced by A. Harnack (1887). Harnack's inequality is used to prove Harnack's theorem about the convergence of sequences of harmonic functions. J. Serrin (1955), and J. Moser (1961, 1964) generalized Harnack's inequality to solutions of elliptic or parabolic partial differential equations. Such results can be used to show the interior regularity of weak solutions.
    Perelman's solution of the Poincaré conjecture uses a version of the Harnack inequality, found by R. Hamilton (1993), for the Ricci flow.
    (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Harnack%27s_inequality)

Concept générique

Traductions

URI

http://data.loterre.fr/ark:/67375/PSR-SX35HXWB-P

Télécharger ce concept :

RDF/XML TURTLE JSON-LD Date de création 11/08/2023, dernière modification le 18/10/2024