Concept information
Terme préférentiel
Dirac comb
Définition
-
In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula
for some given period . Here t is a real variable and the sum extends over all integers k. The Dirac delta function and the Dirac comb are tempered distributions. The graph of the function resembles a comb (with the s as the comb's teeth), hence its name and the use of the comb-like Cyrillic letter sha (Ш) to denote the function.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Dirac_comb)
Concept générique
Synonyme(s)
- impulse train
- sampling function
- shah function
Traductions
-
français
-
distribution cha
URI
http://data.loterre.fr/ark:/67375/PSR-T6P8FGXJ-5
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}