Concept information
Terme préférentiel
peigne de Dirac
Définition
-
En mathématiques, la distribution peigne de Dirac, ou distribution cha (d'après la lettre cyrillique Ш), est une somme de distributions de Dirac espacées de T :
Cette distribution périodique est particulièrement utile dans les problèmes d'échantillonnage, remplacement d'une fonction continue par une suite de valeurs de la fonction séparées par un pas de temps T (voir Théorème d'échantillonnage de Nyquist-Shannon).
(Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/Peigne_de_Dirac)
Concept générique
Synonyme(s)
- distribution cha
Traductions
-
anglais
-
impulse train
-
sampling function
-
shah function
URI
http://data.loterre.fr/ark:/67375/PSR-T6P8FGXJ-5
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}