Concept information
Terme préférentiel
polynomial long division
Définition
-
In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones. Sometimes using a shorthand version called synthetic division is faster, with less writing and fewer calculations. Another abbreviated method is polynomial short division (Blomqvist's method).
Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that
A = BQ + R,
and either R = 0 or the degree of R is lower than the degree of B. These conditions uniquely define Q and R, which means that Q and R do not depend on the method used to compute them.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Polynomial_long_division)
Concept générique
Synonyme(s)
- Euclidean division of polynomials
Traductions
-
français
-
division euclidienne des polynômes
URI
http://data.loterre.fr/ark:/67375/PSR-VGB6QDBC-X
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}